Lynd Research Lab: Metabolic Engineering

The Lynd Lab's Metabolic Engineering group specializes in development and application of techniques for the genetic manipulation of cellulose- and hemicellulose-utilizing anaerobic bacteria pursuant to improving their properties and performance for production of cellulosic biofuels.

Ten most recent papers:

  • Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng. 2015 Nov;32:207-19. doi: 10.1016/j.ymben.2015.10.004.
  • Zhou J, Olson DG, Lanahan AA, Tian L, Murphy SJ, Lo J, Lynd LR. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biotechnol Biofuels. 2015 Sep 15;452-8:138. doi: 10.1186/s13068-015-0304-1.
  • Biswas, R., T. Zheng, D.G. Olson, L.R. Lynd, A.M. Guss. 2015. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol. Biofuels. 8:20. (Abstract)
  • Lo, J, T. Zheng, D.G. Olson, N. Ruppertsberger, S.A. Tripathi, A.M. Guss, L.R. Lynd. 2015. Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and its effect on metabolism. J Bacteriol. doi:10.1128/JB. 00347-15. (Abstract)
  • Mearls, E.B., D.G. Olson, C.D. Herring, L.R. Lynd. 2015. Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6610-5. (Abstract)
  • Currie, D.H., B. Raman, C.M. Gowen, T.J. Tschaplinski, M.L. Land, S.D. Brown, S.F. Covalla, D.M. Klingeman, Z.K. Yang, N.L. Engle, C.M. Johnson, M. Rodriguez, A.J. Shaw, W.R. Kenealy, L.R. Lynd, S.S. Fong, J.R. Mielenz, B.H. Davison, D.A. Hogsett, C.D. Herring. 2015. Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Syst Biol. 9:30 (Abstract)
  • Olson, D.G., M. Maloney, A.A. Lanahan, S. Hon, L.J. Hauser, L.R. Lynd. 2015. Identifying promoters for gene expression in Clostridium thermocellum. Metab. Eng. Commun. 2:23-29. (Article)
  • Zheng, T., D.G. Olson, L. Tian, Y.J. Bomble, M.E. Himmel, J. Lo, S. Hon, A.J. Shaw, J.P. van Dijken, L.R. Lynd. 2015. Cofactor specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 197(15):2610–2619. (Abstract)
  • Olson, D.G., R. Sparling, L.R. Lynd. 2015. Ethanol production by engineered thermophiles. Curr Opin Biotechnol. 33:130–141. (Abstract)
  • Lo, J., T. Zheng, S. Hon, D.G. Olson, L.R. Lynd. 2015. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 197(8):1386–1393. (Abstract)

Additional papers:

  • Mearls, E.B., L.R. Lynd. 2014. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe. 28:109–119. (Abstract)
  • Biswas, R., S. Prabhu, L.R. Lynd, A.M. Guss. 2014. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One. 9(2):e86389. (Article)
  • Bhandiwad, A., A.J. Shaw, A. Guss, A. Guseva, H. Bahl, L.R. Lynd. 2014. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab. Eng. 21:17-25. (Article)
  • van der Veen, D., J. Lo, S.D. Brown, C.M. Johnson, T.J. Tschaplinski, M. Martin, N.L. Engle, R.A. van den Berg, A.D. Argyros, N.C. Caiazza, A.M. Guss, L.R. Lynd. 2013. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J. Ind. Microbiol. Biotechnol. 40(7):725-734. (Abstract)
  • Currie, D.H., C.D. Herring, A.M. Guss, D. Olson, D.A. Hogsett, L.R. Lynd. 2013. Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. Biotechnol. Biofuels. 6:32. (Article)
  • Olson, D.G., L.R. Lynd. 2012. Transformation of Clostridium thermocellum by electroporation. Method Enzymol. 510:317-330. (Abstract)
  • Olson, D.G. and L.R. Lynd. 2012. Computational design and characterization of a temperature sensitive plasmid replicon for gram positive thermophiles. J. Biol. Eng. 6:5. (Abstract)
  • Argyros, D.A., S.A. Tripathi, T.F. Barrett, S.R. Rogers, L.F. Feinberg, D.G. Olson, J.M. Foden, B.B. Miller, L.R. Lynd, D.A. Hogsett and N.C. Caiazza. 2011. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77(23):8288-8294. (Article)
  • Brown, S.D., A.M. Guss, T.V. Karpinets, J.M. Parks, N. Smolin, S. Yang, M.L. Land, D.M. Klingeman, A. Bhandiwad, M. Rodriguez, B. Raman, X. Shao, J.R. Mielenz, J.C. Smith, M. Keller and L.R. Lynd. 2011. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. PNAS. 108(33):13752-13757. (Abstract)
  • Tripathi, S.A., D.G. Olson, D.A. Argyros, B.B. Miller, T.F. Barrett, D.M. Murphy, J.D. McCool, A.K. Warner, V.B. Rajgarhia, L.R. Lynd, D.A. Hogsett and N.C. Caiazza. 2010. Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl. Environ. Microbiol. 76(19):6591-6599. (Abstract)
  • Shaw, A.J., D.A. Hogsett, L.R. Lynd. 2010. Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl. Environ. Microbiol. 76:4713-4719. (Abstract)
  • Shaw, A.J., K. Podkaminer, S.G. Desai, J.S. Bardsley, S.R. Rogers, P.G. Thorne, D.A. Hogsett, L.R. Lynd. 2008. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS. 105:13769-13774. (Abstract)