All Thayer News

Cherenkov Effect Improves Radiation Therapy for Patients with Cancer

Mar 02, 2015   |   NCCC

The characteristic blue glow from a nuclear reactor is present in radiation therapy, too. Investigators from Dartmouth's Norris Cotton Cancer Center, led by Brian W. Pogue and PhD candidates Adam K. Glaser and Rongxiao Zhang, published in Physics in Medicine and Biology how the complex parts of the blue light known as the Cherenkov Effect can be measured and used in dosimetry to make therapies safer and more effective.

"The beauty of using the light from the Cherenkov Effect for dosimetry is that it's the only current method that can reveal dosimetric information completely non-invasively in water or tissue," said Glaser.

Although the phenomenon has been constructively utilized for decades in high-energy particle and astrophysics, only recently has it been investigated during radiation therapy. In this study, investigators separately measured emissions of x-ray photons, protons, and electrons and they found widely varying utility...

..."By detecting this light, we can pursue novel applications of Cherenkov light emission during radiation therapy to help clinicians improve the overall treatment outcome for patients," explained Pogue.

The collaborators intend to pursue further investigation at Norris Cotton Cancer Center to find other applications where this "free" light can be useful, such as continuing clinical trials in which the Cherenkov light from x-ray beams is imaged directly from a patient's tissue surface during radiation therapy.

Link to source:

http://cancer.dartmouth.edu/about_us/newsdetail/73074/

For contacts and other media information visit our Media Resources page.